71 research outputs found

    Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors

    Get PDF
    Multipotent mesenchymal stromal cells (MSCs) are an attractive cell source for cell therapy in cartilage. Although their therapeutic potential is clear, the requirements and conditions for effective induction of chondrogenesis in MSCs and for the production of a stable cartilaginous tissue by these cells are far from being understood. Different sources of MSCs have been considered for cartilage tissue engineering, mainly based on criteria of availability, as for adipose tissue, or of proximity to cartilage and the joint environment in vivo, as for bone marrow and synovial tissues. Focussing on human MSCs, this review will provide an overview of studies featuring comparative analysis of the chondrogenic differentiation of MSCs from different sources. In particular, it will examine the influence of the cells' origin on the requirements for the induction of chondrogenesis and on the phenotype achieved by the cells after differentiation

    Cytoplasmic islet cell antibodies recognize distinct islet antigens in IDDM but not in stiff man syndrome

    Get PDF
    Cytoplasmic islet cell antibodies are well-established predictive markers of IDDM. Although target molecules of ICA have been suggested to be gangliosides, human monoclonal ICA of the immunoglobulin G class (MICA 1-6) produced from a patient with newly diagnosed IDDM recognized glutamate decarboxylase as a target antigen. Here we analyzed the possible heterogeneity of target antigens of ICA by subtracting the GAD-specific ICA staining from total ICA staining of sera. This was achieved 1) by preabsorption of ICA+ sera with recombinant GAD65 and/or GAD67 expressed in a baculovirus system and 2) by ICA analysis of sera on mouse pancreas, as GAD antibodies do not stain mouse islets in the immunofluorescence test. We show that 24 of 25 sera from newly diagnosed patients with IDDM recognize islet antigens besides GAD. In contrast, GAD was the only islet antigen recognized by ICA from 7 sera from patients with stiff man syndrome. Two of these sera, however, recognized antigens besides GAD in Purkinje cells. In patients with IDDM, non-GAD ICA were diverse. One group, found in 64% of the sera, stained human and mouse islets, whereas the other group of non-GAD ICA was human specific. Therefore, mouse islets distinguish two groups of non-GAD ICA and lack additional target epitopes of ICA besides GAD. Longitudinal analysis of 6 sera from nondiabetic ICA+ individuals revealed that mouse-reactive ICA may appear closer to clinical onset of IDDM in some individuals

    Influence of depression symptoms on serum tumor necrosis factor-α of patients with chronic low back pain

    Get PDF
    Introduction: Patients with chronic low back pain (cLBP) have high rates of comorbid psychiatric disorders, mainly depression. Recent evidence suggests that depressive symptoms and pain, as interacting factors, have an effect on the circulating levels of inflammatory markers relevant to coronary artery disease. Our previous work showed a higher serum level of an inflammatory marker tumour necrosis factor-alpha (TNFα) in patients with cLBP, which did not correlate with intensity of low back pain alone. In the present study we investigated the cross-sectional associations of depressive symptoms, low back pain and their interaction with circulating levels of TNFα. Methods: Each group of 29 patients with cLBP alone or with both cLBP and depression was age-matched and sex-matched with 29 healthy controls. All subjects underwent a blood draw for the assessment of serum TNFα and completed a standardised questionnaire regarding medication, depression scores according to the German version of Centre for Epidemiological Studies Depression Scale (CES-D), pain intensity from a visual analogue scale, and back function using the Roland and Morris questionnaire. The correlations between TNFα level and these clinical parameters were analysed. Results: There were no differences in TNFα level between cLBP patients with and without depression. Both cLBP patients with (median = 2.51 pg/ml, P = 0.002) and without (median = 2.58 pg/ml, P = 0.004) depression showed significantly higher TNFα serum levels than healthy controls (median = 0 pg/ml). The pain intensity reported by both patient groups was similar, while the patients with depression had higher CES-D scores (P < 0.001) and worse back function (P < 0.001). The variance analysis showed that the interaction between TNFα level and pain intensity, CES-D scores, sex, body mass index and medication was statistically significant. Conclusions: Depression as a comorbidity to cLBP did not influence the serum TNFα level. It seems that TNFα somehow acts as a mediator in both cLBP and depression, involving similar mechanisms that will be interesting to follow in further studies

    BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors

    Get PDF
    BACKGROUND: As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. METHODS: Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. RESULTS: The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. CONCLUSIONS: The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells

    Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells

    Get PDF
    Background: Mesenchymal stromal cells isolated from bone marrow (MSC) represent an attractive source of adult stem cells for regenerative medicine. However, thorough research is required into their clinical application safety issues concerning a risk of potential neoplastic degeneration in a process of MSC propagation in cell culture for therapeutic applications. Expansion protocols could preselect MSC with elevated levels of growth-promoting transcription factors with oncogenic potential, such as c-MYC. We addressed the question whether c-MYC expression affects the growth and differentiation potential of human MSC upon extensive passaging in cell culture and assessed a risk of tumorigenic transformation caused by MSC overexpressing c-MYC in vivo. Methods: MSC were subjected to retroviral transduction to induce expression of c-MYC, or GFP, as a control. Cells were expanded, and effects of c-MYC overexpression on osteogenesis, adipogenesis, and chondrogenesis were monitored. Ectopic bone formation properties were tested in SCID mice. A potential risk of tumorigenesis imposed by MSC with c-MYC overexpression was evaluated. Results: C-MYC levels accumulated during ex vivo passaging, and overexpression enabled the transformed MSC to significantly overgrow competing control cells in culture. C-MYC-MSC acquired enhanced biological functions of c-MYC: its increased DNA-binding activity, elevated expression of the c-MYC-binding partner MAX, and induction of antagonists P19ARF/P16INK4A. Overexpression of c-MYC stimulated MSC proliferation and reduced osteogenic, adipogenic, and chondrogenic differentiation. Surprisingly, c-MYC overexpression also caused an increased COL10A1/COL2A1 expression ratio upon chondrogenesis, suggesting a role in hypertrophic degeneration. However, the in vivo ectopic bone formation ability of c-MYC-transduced MSC remained comparable to control GFP-MSC. There was no indication of tumor growth in any tissue after transplantation of c-MYC-MSC in mice. Conclusions: C-MYC expression promoted high proliferation rates of MSC, attenuated but not abrogated their differentiation capacity, and did not immediately lead to tumor formation in the tested in vivo mouse model. However, upregulation of MYC antagonists P19ARF/P16INK4A promoting apoptosis and senescence, as well as an observed shift towards a hypertrophic collagen phenotype and cartilage degeneration, point to lack of safety for clinical application of MSC that were manipulated to overexpress c-MYC for their better expansion

    Identification of novel SHOX target genes in the developing limb using a transgenic mouse model

    Get PDF
    Deficiency of the human short stature homeobox-containing gene (SHOX) has been identified in several disorders characterized by reduced height and skeletal anomalies such as Turner syndrome, Léri-Weill dyschondrosteosis and Langer mesomelic dysplasia as well as isolated short stature. SHOX acts as a transcription factor during limb development and is expressed in chondrocytes of the growth plates. Although highly conserved in vertebrates, rodents lack a SHOX orthologue. This offers the unique opportunity to analyze the effects of human SHOX expression in transgenic mice. We have generated a mouse expressing the human SHOXa cDNA under the control of a murine Col2a1 promoter and enhancer (Tg(Col2a1-SHOX)). SHOX and marker gene expression as well as skeletal phenotypes were characterized in two transgenic lines. No significant skeletal anomalies were found in transgenic compared to wildtype mice. Quantitative and in situ hybridization analyses revealed that Tg(Col2a1-SHOX), however, affected extracellular matrix gene expression during early limb development, suggesting a role for SHOX in growth plate assembly and extracellular matrix composition during long bone development. For instance, we could show that the connective tissue growth factor gene Ctgf, a gene involved in chondrogenic and angiogenic differentiation, is transcriptionally regulated by SHOX in transgenic mice. This finding was confirmed in human NHDF and U2OS cells and chicken micromass culture, demonstrating the value of the SHOX-transgenic mouse for the characterization of SHOX-dependent genes and pathways in early limb development

    Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model

    Get PDF
    Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate

    Strategic School Improvement Fund: updated 12 September 2017

    Get PDF
    <p><b>Comparison of MRI (A and B) with histological findings (C).</b> The lateral tibia plateau region of the sham knee joint of animal #8958 showed no salience neither in the sagittal MRI-scan (A) through the lateral compartment of the knee nor in the coronal MRI-scan (B) and was therefore rated as unchanged. The scale bars for A and B were determined with the program RadiAnt DICOM viewer (see caption <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0165897#pone.0165897.g001" target="_blank">Fig 1</a>). In contrast to the MRI results, the histological safranin-o staining (C) showed a moderate degeneration (Little-score: 10.5 points) with a fissure (1) in the cartilage and detachment of the topmost layer of the cartilage tissue. The histological finding and the MRI result did not concur.</p
    corecore